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An interpolation method for scalar functions on a rectangular grid on a planar surface is 
extended to the interpolation function on a closed three-dimensional triangulated surface of 
arbitrary shape. Two variants are considered. The first one constrains the Laplacian of the 
function to be zero at points where the function values are unknown. The second one 
minimizes the Laplacian at all points of the surface considered. Some illustrative examples 
of both variants are given in applications to the display of potential distributions on the 
boundary surface of an electrical volume conductor. b 1989 Academic Press, Inc 

I. INTRODUCTION 

A problem often encountered in various fields of research is that of obtaining an 
acceptable approximation of a scalar function fdelined on a closed surface in three- 
dimensional space, for which the function values are available (for instance, by 
measurement) at a limited number of points on this surface only. There are 
numerous methods for interpolating the value offat any given point on the surface 
if the function values are known at all nodal points of a mesh of this surface [8]. 
In this paper we shall discuss the case in which the function values are known for 
a subset of the nodes only. 

One of the methods for solving this problem for a regular, rectangular mesh on 
a planar surface was presented by Heringa et al. [7]. The points at which the value 
off is given form a subset of the points of this mesh. The values off at all other 
points of the.mesh are found by requiring the value off at these points to be equal 
to the straight average of the values at the neighbouring points. This procedure 
constructs a smooth function, the values of which coincide with the true values at 
the points where f is known. 

This method can be extended to a non-regular rectangular mesh. In that case the 
function value at a point is assigned a weighted average of the values at its direct 
neighbours. The weighting coefficients depend on the distance between the points. 
This method can be modelled by a resistance network, where the potential is fixed 
at some points and the potential at all other points is found by applying Kirchhoffs 
law. The resistances in this model represent the weighting coefficients. 
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A similar way to construct a smooth interpolation is to put constraints on the 
Laplacian df of the function, i.e., 

The choice of the Laplacian to construct a smooth function is just one of the many 
that can be made. It has been used in as widely different fields as the solution of 
integral equations [ 111 and digital picture processing [ 131. As the Laplacian of a 
function at a point can be estimated in a rectangular mesh as a weighted sum of 
the value at that point and at its direct neighbours, the method described above can 
be looked upon as an approximation of the constraint Af = 0. 

In the case of a function defined on a curved surface in three-dimensional space 
we have to consider A, f instead of Af: 

Asf=(-$+$)L (2) 

in which x and y are local surface coordinates. 
A rectangular mesh is not suited for representing a surface of arbitrary shape in 

three dimensions; such a surface is more adequately described by a triangular mesh. 
So the first extension to the interpolation method is that we shall construct an 
estimate of A,f on a triangular mesh. Another extension which we shall present is 
a method which minimizes A,f at all points without changing the values at the 
prescribed points. 

ILESTIMATE OF A,f IN A TRIANGULAR MESH 

We start by considering the well-known results for the rectangular mesh. 
Consider pO in such a mesh with neighbours p, . “pd. We will denote fi the value 
off at point pi. Let (x, y) be the position of p,,. A Taylor expansion in the x 
coordinate yields 

or 

Similarly, for the y coordinate one has 

f2=fo+h$ 

(da) 

+Qatf 
PO 2 aY’ PO’ 

(4b) 
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A similar expression can be found for f3 and f4. Addition of 
expressions yields 

fi +f2 +f3 +f4 = 4fo + h2 (-$+$)f Ip0=4fo+h2Afo, 

thus 

i.e., 

Afo 2; (f-f,,, 

estimate of in which f is the average of fi . .f4. This is the well-known first-order 
the Laplacian A in a regular rectangular mesh at pO [ 11. 

Now consider a regular planar triangular mesh. In this mesh each point has six 
neighbours instead of four. We can extend the estimation of Eq. (5) to 
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these four 

(5) 

(6) 

in which f is now the average of fi .. .f6, i.e., the average of the function value at 
all neighbouring points. This expression holds true for any II points regularly 
distributed on a circle having a radius h around the reference point pO as can be 
seen by applying a Taylor expansion to any point pi with coordinates 
xi = x(pO) + h cos(di); yi = y(pO) + h sin(di), and using the orthonormality 
properties of points evenly distributed on a circle. 

In an irregular planar triangular mesh the number of neighbours and their 
relative position and distance differ from point to point. Let n be the number of 
neighbours pi (i = 1, n) of any point po, and hi the distance between pi and po. We 
now extend Eq. (7) to this situation. When not all neighbours are at the same 
distance we use a linear approximation off on the line between p. and pi. Let h be 
the average of h, . ..h., i.e., the mean distance between p. and its neighbours. The 
linear approximation to f for points pi at a distance h from p. on the line from p. 
to pi then reads 

Now we have the values at n points at distance h from po, so we can extend Eq. (7) 
by replacing h by h and f by the mean value of the x:s, 

Afo-$($-fo)> 

fo++fo)}-fo)> 
1 
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hence 

(9) 

When the points pi are not distributed at regular angles around pO, Eq. (9) may 
not be a very accurate estimation of the Laplacian as such. We have tried an 
expression that accounts for irregular angles. Although this expression gives a better 
approximation of the Laplacian on a planar surface, it does not give better results 
when used as a constraint in the interpolation procedure (closed surface in 
3-dimensional space). As this expression is more complicated, we will use the 
approximation given by Eq. (9) as a constraint in the interpolation procedure to be 
described. We will use this estimate of Af on a planar triangular mesh as an 
estimate of A,f on a closed triangulated surface in three-dimensional space. 

III. INTERPOLATION PROCEDURE 

Consider a triangular mesh on a three-dimensional surface (Fig. 1). Let N be the 
number of points in this mesh. The function values fi at points pi, i= 1, K are to 
be found through interpolation; those at points p,, i = K+ 1, N are assumed to be 
known. The Laplacian A, can be expressed as a matrix L, defined by 

4 1 
Iii= -;i K ) 

0 
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[“=h,.h, for i #j, pi direct neighbour of pi, 

1, = 0 for i #j, pi no direct neighbour of pi, 

a b 

FIG. 1. Triangular mesh of a sphere. The points which are used as “electrode points” are indicated 
by bold circles. Fiogure la is an anterior view, from slightly above, and Fig. lb is a posterior view. 
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with 

h,, distance between pi and pj; 

ni, number of neighbours ofp,; 

hi, average of h, over the neighbours of i; 

(l/hi), average of l/h, over the neighbours of i. 

Now we have for the Laplacian off at point i, 

or, 

v=Lf, 

in which v is the vector containing elements vi = (d,f)i. 
The vector f can be split into two parts f, and f,, f, related to points 1 to K, and 

f2 related to the remaining points. The vector f, contains the unknown values, and 
fi contains the values specified. In a similar way we can partition L into four parts 

and v into v1 and v2. 

Method A: A,f = 0 at Points Where f Is not Given 

The condition (A, f )i = 0 for i = 1 to K (i.e., at all points where f is not given; 
equivalent to using the analogon of a resistance network) leads to solving the 
equation 

v1= &IL,,) 
f, 

0 
f =Li,f,+Li2fZ=o, 

2 

or 

L,,f, = -L,,f,. 

This is a set of K linear equations in K variables. This set is not singular as can 
immediately be appreciated by considering the implied physical model (resistance 
network). Consequently this set can easily be solved, e.g., by Gaussian elimination 
with partial pivoting [S, Chap 31. 
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Method B: Minimize A,f at All Points 

In Method A the interpolated function values were found by requiring A, f to be 
zero at the points where f is not given. As a result the function will be smooth at 
these points, but may not be smooth at all at the points wherefis given. Intuitively, 
this non-uniform application of the constraint to the two sets of points considered 
is not immediately obvious. We shall now demonstrate that the constraint may be 
imposed uniformly, while still retaining the values at the points wheref is given. In 
that case we still have K variables, but we have N equations: one equation for A, f 
at each point. Since we now have more equations than variables there is, in general, 
no solution to the demand A,f = 0. Instead, we relax the demand on A,f, and 
require it to be minimal in a least squares sense. Hence we want to minimize the 
Euclidean norm Iv/ of v, 

This is equivalent to finding the least squares solution to 

which is a system of N equations in K variables. The well-known least squares 
solution to this system of equations is 

fl= -((~::)‘(:::))~‘(:::)‘(LL::)f~. (11) 

The solution to Eq. (10) may be computed directly from Eq. (ll), using some 
appropriate numerical routine for the matrix inversion of the non-singular matrix 
involved. In the results to be presented Eq. (10) was solved directly by using the 
routine HFTI [9], which provides the general least squares solution. For large 
systems it may be advisable to use the sparseness of the system [4]. When consider- 
ing the use of methods for solving sparse systems the complication due to the fact 
that the bandwidth is, in general, not uniform has to be taken into account. This 
is the case when the vertex points are surrounded by a non-uniform number of 
neighbours. 

Iv. RESULTS 

This section demonstrates the application of the methods described above in a 
number of examples. 
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FIG. 2. Plots of isopotential lines on the mesh of Fig. 1 (anterior view). The stepsize between the 
isopotential lines is the same in all plots. Negative lines are dashed. The zero line is dashed in larger 
segments. In the difference plots (Figs. 2d and e) the area within half a stepsize around zero is shaded: 
(a) potential distribution on the sphere generated by a current dipole inside the sphere as computed 
analytically; (b) potential distribution estimated from the potentials at the electrode points (see Fig. 1) 
as computed by Method A; (c)potential distribution estimated from the potentials at the electrode 
points (see Fig. 1) as computed by Method B; (d) difference between the result of Method A (Fig. 2b) 
and the actual potential distribution (Fig. 2a); (e) difference between the result of Method B (Fig. 2c) 
and the actual potential distribution (Fig. 2a). 
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(a) Consider a sphere of radius 1 and electrical conductivity 1 (arbitrary 
units). Let an electrical current dipole of unit strength be placed half-way between 
the center and the top of the sphere. The dipole is directed towards the top of the 
sphere. Figure 1 depicts a 162-point mesh on the surface of the sphere. The poten- 
tial generated by the dipole at the points of the mesh can be calculated analytically 
[ 121. In Fig. 2a isopotential lines on the sphere are depicted. This plot has been 
made by assuming that on each triangle of the mesh the potential varies linearly 
between the vertices. 

We arbitrarily (just for the sake of this demonstration) define 12 “electrode” 
points on this mesh, as shown in Fig. 1, and take the analytically computed poten- 
tials at these points. From the potentials at these points the potentials at the 
remaining points have been computed by the interpolation methods A and B 
described above. Figure 2b shows the resulting potential distribution for Method A, 
and Fig. 2d, the difference with the actual potential distribution. Figures 2c and e 
are the corresponding results for method B. 

The difference between the actual potential distribution and the estimated poten- 
tial distribution can be expressed by the relative difference: the ratio of the RMS 
(root mean square) value of the difference between the actual potential distribution 
g and the estimated one f, and the RMS value of the actual potential distribution: 

RELDIF = (l/NCEt ki-.fT “2 
(l/W CL L d > . 

The values given below refer to this measure computed over all points in the mesh 
considered. If the relative difference is zero, the estimated potential distribution is 
exactly equal to the actual one, and if the relative difference is one, the difference 
between estimated and actual potential distribution is of about the same size as the 
potential distribution itself. The relative difference for Method A in this example 
was found to be 0.413; for Method B it was 0.075. The maximum absolute value of 

a b 

FIG. 3. Triangular mesh of the abdomen of a pregnant woman. The points which are used as 
“electrode points” are indicated by bold circles. Figure 3a is an anterior view, from slightly above, and 
Fig. 3b is a posterior view. 
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FIG. 4. Plots of isopotential lines on the mesh of Fig. 3 (anterior view). The stepsize between the 
isopotential lines is the same in all plots. Negative lines are dashed. The zero line is dashed in larger 
segments. In the difference plots (Figs. 4d and 4e) the area within half a stepsize around zero is shaded: 
(a) potential distribution on the abdominal surface caused by a current dipole inside the abdomen at the 
position of the fetal heart as computed by the boundary element method; (b) potential distribution 
estimated from the potentials at the electrode points (see Fig. 3) as computed by Method A; (c) potential 
distribution estimated from the potentials at the electrode points (see Fig. 3) as computed by Method B; 
(d) difference between the result of Method A (Fig. 4b) and the actual potential distribution (Fig. 4a); 
(e) difference between the result of Method B (Fig. 4c) and the actual potential distribution (Fig. 4a). 
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the potential on the sphere is 0.796. The maximum of the (observed) differences 
between the actual and the estimated values were 0.242 and 0.050 for Methods A 
and B, respectively. 

(b) Consider the homogeneous volume conductor plotted in Fig. 3. The sur- 
face is specified by 192 points. The potential distribution due to a current dipole 
inside this volume, as found by the boundary element method [2] is shown in 
Fig. 4.a. This example is taken from a study on the volume conduction aspects of 
the fetal electrocardiogram [lo]. The volume represents the abdomen of a pregnant 
woman, and the electrical current dipole is located at the position of the fetal heart. 
Figure 3 also depicts the position of 32 electrodes on this mesh. Figure 4 shows the 
potential distribution estimated from the potential at the 32 electrodes, using 
Methods A and B. The relative difference for Method A was found to be 0.266, and 
for Method B it was 0.156. The maximum absolute value of the potential on the 
surface is 1.267. The maximum of the differences between the actual and the 
estimated values were 0.677 and 0.411 for Methods A and B, respectively. 

(c) We conclude this section by showing an application of this interpolation 
method to body surface mapping in cardiography [ l&3]. Figure 5 shows a 398- 
point mesh of a torso, and the position of 64 surface electrodes. These electrode 
positions are used in a body surface mapping set-up at the Department of 
Cardiology of the University Hospital at Nijmegen [6]. Figure 6 shows the 
potential distribution at all 398 points interpolated by Methods A and B from the 
data recorded at the 64 electrodes. The potential distribution at 40 ms after onset 
of the QRS complex is plotted. 

V. DISCUSSION 

Method A constrains the Laplacian of the function to be zero at the points where 
the function value is not known. A one-dimensional analogon of this method is a 
linear interpolation between the points where the function values are known 

a b 

FIG. 5. Triangular mesh of a human torso. The points which are used as “electrode points” are 
indicated by bold circles. Figure 5a is an anterior view, from slightly above, and Fig. 5b is a posterior 
view. 
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FIG. 6. Plots of isopotential lines on the mesh of Fig. 5 (anterior view). The stepsize between the 
isopotential lines is the same in all plots. Negative lines are dashed. The zero line is dashed in larger 
segments: (a) potential distribution estimated from the potentials at the electrode points (see Fig. 5) as 
computed by Method A; (b) potential distribution estimated from the potentials at the electrode points 
(see Fig. 5) as computed by Method B. 

(Fig. 7a). In a linear interpolation the second derivative (the one-dimensional 
analogon of the Laplacian) is zero at all points except for those which are being 
interpolated. In this method, extremes of the function can only occur at points 
where the function value is known as can be seen by considering the one- 
dimensional analogon, or by considering the equivalent resistance network model. 

Method B minimizes the Laplacian at all points. The one-dimensional analogon 
(Fig. 7b) is similar to a cubic spline. The spline algorithm constructs a continuous 
function between the points where the function values are known in such a way that 
the integral of the square of the second derivative is minimized [ 5, Section 4.4). 
This function turns out to be a cubic polynomial. If, in the one-dimensional 
analogon, the number of points at which the function values are not known 
approaches infinity the solution approaches the corresponding cubic spline. 
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FIG. 7. (a) Plot of the result of the one-dimensional analogon of Method A. The points at which the 
function values are known are bold. (b) Plot of the result of the one-dimensional analogon of Method B. 
The points at which the function values are known are bold. They are the same as the ones in Fig. 7a. 
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In one dimension, Method B yields a smoother line than Method A (Fig. 7). 
Extremes may occur at positions at which the function values are not known. As 
a result, Method B may, for instance in potential measurements using electrodes, 
reconstruct extremes at positions where no electrodes were placed. Method A does 
not have this ability. This is a manifestation of Earnshaw’s theorem [14]. This 
effect is clearly shown by example b (Fig. 4). Method B finds, reasonably accurately, 
the position and size of the extremes, in contrast to Method A. Figure 7 indicates 
that Method B may give better results, as it gives a smoother estimate. 

Both examples a and b show that the estimate constructed by Method B 
resembles the actual functions more closely than does the estimate constructed by 
Method A. This can be seen by considering the plot of the difference between the 
estimate and the actual function, as well as by considering the relative difference. In 
both cases Method B gives a substantially smaller difference. In example c the 
actual potential distribution is not known. The differences between the results of 
both methods are substantial at areas where few electrodes are placed. 

We have studied the advantage of (the more complex) Eq. (9) as a constraint 
rather than the simple direct neighbour averaging (Eq. 7) by repeating the 
computations, now based on Eq. (7). The relative differences in this case were found 
to be 0.429 and 0.094 in example a for Methods A and B, respectively, and 0.373 
and 0.254 in example b, so Eq. (9) gives little improvement over Eq. (7) if the mesh 
is fairly regular, like in example a, and a large improvement if the mesh is irregular, 
like in example b. In view of the observed high quality of interpolation procedure B 
(considering the small number of points at which the function values are considered 
to be known in the examples), we have refrained from considering more complex 
approximations to the Laplacian in the most general case [8]. The main purpose 
of this paper has been to demonstrate that interpolation method A (Laplacian 
applied to points for which the function values are to be found) may be extended 
to all points considered (Method B). 

The choice to minimize the Laplacian of the function is just one of the many that 
can be made to construct an interpolation of a function. In general, there is no 
answer to the question, what interpolation scheme is optimal? The interpolation 
scheme should be designed according to the general principal that the a priori 
known properties of the function to be estimated should be incorporated as well as 
feasible. For instance, if one knows beforehand that the function is linear, one 
should use an interpolation method which yields linear estimates. 

Keeping this general principle in mind, we can see why the minimization of the 
Laplacian is particularly suited for volume conduction problems. The potential 4 
inside a volume conductor fulfils the equation A,d =O, where A, denotes the 
Laplacian in three dimensions, at places where there is no current source and the 
medium is (locally) homogeneous. The value of A,4 is, in its discrete form, propor- 
tional to the amount of electric current flowing towards the boundary. Since at the 
boundary the normal component of the electrical current density is essentially zero, 
the local minimization of A,7b is an obvious choice, as is the uniform extension of 
this constraint over the entire (global) surface. Within this context Method A can 
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be viewed as treating the volume conductor as a thin (two-dimensional) layer 
having the shape of the surface of the volume conductor, whereas Method B allows 
the interior of this surface to become manifest (extension to three dimensions). 

In cases where the Laplacian is considered being suitable as a constraint in an 
interpolation procedure (be it in potential theory or other physical problems in 
which the Laplacian is zero for the passive part of the medium, like heat conduc- 
tion, diffusion, etc.) we maintain that this constraint should be applied uniformly to 
all points considered. That this is indeed possible was demonstrated in this paper. 
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